第111章 机制讨论(2 / 3)

众星之子 罗三观.CS 1338 字 5个月前

就会炸呢?

不合理的地方实在是太多,以至于陆沉不得不做出了一个推测——发热不可能全是量子释能综合症惹的祸。

回到酒店的路上,陆沉一直在向杨伟民介绍自己的推测。这个推测其实并不成熟,陆沉不可能像杨伟民那样自己琢磨十几年甚至更久才把结论说出来——所以他说话的时候有些结巴,还有些语无伦次。

这时候就体现出杨伟民的本事了。陆沉一会嘟囔氢原子释能不会全部转化成热能,一会又恍然大悟说什么“释能不应该始终保持稳定”。要是换个普通临床内科教授来听,说不定要让陆沉去先找李晓慧主任聊聊天。而在组里干了这么些日子的杨伟民不光听明白了陆沉的理论,并且还迅速抓住重点开始了自己的思考。

“为了方便讨论和思考,让我们假设一开始发生电子能级跌落的位置是细胞内部。”杨伟民拉着自己的学生开始了讨论,“细胞内的氢元素电子能级跌落,并且释放能量的时候,紫外线会首先影响到这个细胞内的蛋白质,并且对细胞膜造成损伤。发生了释能的细胞本身会死亡。”

而在这个基础上,释能细胞周围的细胞也会同时收到损伤,并且这个损伤会一直持续到光子的能量被消耗干净为止。

假设光子穿越了三百个细胞后才被消耗殆尽。那就意味着,这三百个细胞都发生了严重损伤,并且形成了一个条状损伤线。

而此时,释能原位的细胞内部,还有很多氢原子正处于n=2的激发态。

氢原子外的电子将会天然倾向于维持在基态而非激发态。就像是电流天然会倾向于从高电压流向低电压区一样。当一枚氢原子跌落回到基态时,它周围的氢原子当然也有可能跌落回到基态。

<div class="contentadv"> 由于能级跌落转化出的光子飞行方向完全随机,长达三百个细胞的损伤带会逐渐扩大成为一个直径六百个细胞的损伤球。

当然,所谓的“损伤球”仍然只是一个为了方便理解和讨论而设定的近似描述,实际情况是,这个损伤带会表现的像是个被静电强烈吸引的毛球。越靠近中心,损伤带越密集,越靠近边缘,则损伤带越稀疏。

这个两厘米的损伤球主要以破碎的细胞膜和流出的细胞质为主,同样的,越靠近边缘则损伤程度越小。很可能只有圆心周围几毫米处的细胞全部都是破碎的。

细胞质内部含有热休克蛋白,这种蛋白会在细